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Type 2 diabetes (T2D) is a worldwide epidemic affecting
8.3% of the current global adult population (1), with
a growing prevalence in both developed and developing
nations. It is estimated that of 29.1 million U.S. individ-
uals with T2D, 8.1 million (27.8%) are undiagnosed—up
from 7.0 million (27.1%) in 2010. T2D is strongly herita-
ble, with estimates ranging from 30% to 70% (2). As
elevated blood glucose can precede the diagnosis of T2D
by up to 10 years, irreversible T2D-related complications
including neuropathies and renal disease often begin to
develop before diagnosis. Lean offspring of T2D patients
are more likely to be insulin resistant than lean offspring
of nondiabetic subjects, which appears to be caused in
part by inherited mitochondrial defects that result in
reduced glucose and fatty acid oxidation efficiency, lead-
ing to lipotoxicity and fat accumulation inside of muscle
cells (3). With the rapid advancement of high-throughput
genotyping technologies and the aggregation and meta-
anlysis of large-scale genome-wide association studies
(GWAS) and gene-centric T2D studies (4–6), .70 loci
have been identified, although only ;10% of the genetic
variance of T2D risk is explained by these signals. Over
the last five years, the field has progressed toward in-
tegrating genetic risk scores (GRS) with conventional T2D
risk scores such as the Framingham Offspring Study risk
score (FORS) (7). If sufficient improvement in risk predic-
tion can be attained with integration of GRS into conven-
tional risk models, there may be clinical utility in earlier
identification of higher-risk individuals, particularly those
individuals with lower BMI or who lack the traditional
nongenetic risk factors.

In 2008, the first T2D GRS analysis in the Framing-
ham Offspring Study (FOS) used an 18-SNP T2D risk
score in 2,377 T2D-free participants followed for 28
years, of whom 225 (9.5%) developed T2D. They found

a modest but significant 12% relative risk increase of
T2D incidence per risk allele. Irrespective of FORS
though, individuals possessing the highest GRS (.21
genotype score) compared with those with the lowest
GRS (,15 genotype score) had increased T2D risk
(odds ratio [OR] 2.6) (8). Concurrently, a Scandinavian
study took a similar approach using a 16-SNP risk model
and similarly found that the GRS had a slight improve-
ment for incident T2D prediction when compared with
a score of clinical risk factors alone (9). A 2011 study by
de Miguel-Yanes et al. (10) used longer follow-up periods
of incident T2D outcomes in FOS, where 446 individuals
(12.8%) developed T2D over a period of 34 years, and
used a 40-SNP risk score to show utility for T2D risk
prediction in those aged ,50 years but not in older
individuals. Vassy et al. (11) recently reanalyzed the
same FOS data from the de Miguel-Yanes 2011 study
(10), together with a smaller data set from younger Cor-
onary Artery Risk Development in Young Adults
(CARDIA) subjects, but using an updated 62-SNP model,
also showed a modest increase in the added value of T2D
incident prediction. This suggests that GRS may be more
useful in younger individuals, fitting the biological model
that diseases that affect young individuals are more
likely to have stronger genetic determinants.

In this issue of Diabetes, a new article by Talmud et al.
(12) employed a weighted T2D GRS using 65 variants
derived from recent large-scale T2D association meta-
analyses to examine the impact on T2D risk assessment
in seven prospective studies from the UK-based UCLEB
(University College London-London School of Hygiene
and Tropical Medicine-Edinburgh-Bristol) Consortium
of prospective studies. Of 13,294 individuals who were
initially free from T2D, 804 developed T2D over
a median of 10 years’ follow-up. Talmud et al. (12)
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compared the performance of the GRS with the phenotype-
based FORS risk model, and then the two models in
combination, and investigated whether risk prediction,
inclusive of GRS, differs by age and by BMI.

When the top versus bottom quintiles of genetic
score were compared, an OR of 2.7 was observed for
T2D development in this data set. When the authors
used a 10% false-positive rate, they found that the
genetic score alone detected 19.9% of incident cases,
while using the FORS alone detected 30.7% and, in
combination, detection of 37.3% of cases was observed.
The areas under the receiver operator curves (AROC)
were 0.60, 0.75, and 0.76, respectively, showing only
a marginal improvement in the discrimination after
the addition of GRS to phenotypic information. They
also used a net reclassification improvement (NRI),
a metric that quantifies the extent to which the com-
bined scores move individuals to risk categories that
more accurately assess the manifestation of their disease
status (13). They observed that the addition of the GRS
to the FORS did result in an NRI of 8.1% in this UCLEB
data set. The authors also examined whether genetics
plays a larger role in incidence T2D risk in different
tertiles of BMI. They showed that individuals in the
lowest BMI tertile (,24.5 kg/m2) had an NRI of 27.6%
compared with those in the top tertile, with an NRI of
2.6%, showing greater utility in the NRI reclassification
for prediction using GRS plus FORS within leaner indi-
viduals. Interestingly, there was no differential effect by age
categories.

A major strength of the current study is the use of larger
independent studies other than the relatively smaller FOS,
which was used in three of the previous studies (8,10,11),
and FORS; thus, these earlier results cannot be considered
independent of each other. The 2008 Scandinavian T2D
GRS study (9), while well powered with 2,201 incident
T2D cases, used only 16 SNPs in the GRS, limiting the
extent of genetic contribution to the scores examined ver-
sus the updated 65-SNP panel in the Talmud study (12).
The Talmud et al. study also excluded latent autoimmune
diabetes in adults cases, as in many genetic studies ;10%
of T2D “cases” are actually cases of latent autoimmune
diabetes in adults and thus misclassified. A weakness of
the study is that the length of follow-up is not as long as
many of the previous studies (see Table 1), although this
will likely be updated over the next number of decades.

The two major challenges of genetic and phenotypic
data-set integration for T2D risk prediction include an
incomplete knowledge of the genetic variance and pheno-
typic heterogeneity. While most of the common genetic
variants having associations with the strongest main effects
has likely been unveiled through GWAS and second-
generation sequencing, additional portions of the genetic
variance may be explained by a number of factors including
rarer higher-penetrant variants, epigenetics, gene environ-
ment, gene-gene interactions, and sex-specific genetic
signals (5). Major challenges in accruing sufficient incident
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cases and samples to discover such effects remain. Improve-
ments to the portion of genetic variance explained could
arise through use of weaker sub–genome-wide signals
through the techniques such as genome-wide complex trait
analysis (GCTA) (14), as demonstrated in recent publica-
tions in T2D (5) and height (15). The polygenic nature of
T2D is complex with loci impacting gluconeogenesis, glu-
cose transport, insulin homeostasis, and satiety, subse-
quently impacting the manifestation, progression, severity,
and even the treatment of T2D (16). Phenotypic com-
plexity includes differing mechanisms leading to T2D as
well as cases that remain undiagnosed. The heritability of
maturity-onset diabetes of the young is typically mono-
genic in nature with approximately a dozen genes impli-
cated, primarily impacting glucose homeostasis. Risk
variants in these same maturity-onset diabetes of the
young genes are also enriched in T2D cases, providing
another example of common variants in genes involved
in Mendelian disease that also contribute to risk of com-
mon disease (17).

Even as we struggle with the clinical meaningfulness,
cost-benefit metrics, and justifications of preemptive
genetic testing, there are major implementation chal-
lenges ahead. These include implementing clinical geno-
typing/sequencing; Consent Education, Regulation and
Consultation (CERC) between the patient, health care
system, and physicians; and return of results using clinical
decision support models. Implementation of solutions to
these problems are proceeding on a large scale for a
number of diseases across 10 major U.S. hospital networks/
institutes by the Electronic Medical Records and Genomics
(eMERGE) Network. eMERGE is using discovery GWAS
and electronic medical records data from 60,000 indi-
viduals taken from the biorepositories of several hun-
dreds of thousands patients. Genetic and environmental
outcomes across diabetic comorbidities have already been
examined, with a major focus on integrating clinically
guided dosing of drug therapies using pharmacogenomic
approaches (19,20). While T2D GRS will likely improve
incrementally, the clinical utility remains to be deter-
mined at national scales, although it is likely that benefits
will be reaped by at-risk populations such as lean indi-
viduals with T2D who may not present to primary care
with later stages of disease manifestation.

Duality of Interest. No potential conflicts of interest relevant to this article
were reported.
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